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1,3-Propanediol (1,3-PDO) is a bifunctional molecule, and used in applications similar to those of 
ethylene glycol, propylene glycol, 1,3-butanediol and 1,4-butanediol. The use of glycerol as a feedstock 
is an alternative to reduce production costs for both 1,3-PDO and biodiesel, since biodiesel glycerol can 
be used for the production of 1,3-PDO by bacteria. Also, using metabolic engineering, it is possible to 
manipulate the metabolic routes and obtain high value products, reduce or eliminate the formation of 
undesirable byproducts. The aim of the study was to produce 1,3-propanediol in E. coli cloned with dha 
genes from Klebsiella pneumoniae GLC29. Six genes responsible for 1,3-PDO production in Klebsiella 
pneumoniae GLC29 were cloned. These genes were assembled in pSB1C3 as an expression vector: 
Genes dhaB1, dhaB2, dhaB3 and dhaT (pSB1C3dhaB123T), and another vector with genes dhaF and 
dhaG (pSB1C3dhaB123TFG) were derived using Gibson's Assembly technique. Escherichia coli TCS099 
and SZ63 stains were used as hosts for 1,3-PDO production, and kept at -80°C for long-term storage. 
Glycerol was used as the sole or main carbon source in all experiments. Fermentations were performed 
in flasks in aerobic and anaerobic conditions using minimal media. Also, two stage fermentation 
(aerobic-anaerobic) was performed for 1,3-propanediol production. Only pSB1C3dhaB123TFG was able 
to produce high amounts of 1,3-PDO in shake flasks experiments, producing 2.5 g/L in micro-aerobic 
conditions, using E. coli TCS099 as host. Besides, E. coli SZ63 hosting pSB1C3dhaB123TFG was able 
to produce high amounts of 1,3-PDO, corresponding to 11.3 g/L of 1,3-PDO using a two-stage 
fermentation process using low concentration of vitamin B12 (1 mg/L). Plasmid pSB1C3dhaB123TFG 
shows potential for producing high amounts of 1,3-PDO, specially because of dhaF and dhaG, 
reaffirming the importance of this genes on 1,3-PDO production, especially with the addition of low 
amounts of vitamin B12, which is an expensive compound.  
 
Key words: 1,3-Propanediol, Escherichia coli, glycerol, Klebsiella pneumoniae, metabolic engineering.  

 
 
INTRODUCTION 
 
1,3-Propanediol (1,3-PDO) is a starting point for a new 
generation of polymers with improved  properties  for  the 

textile industry. It can be obtained by chemical or 
biochemical route, however in the chemical route the  co- 

 

 

 



 
 
 
 
production of its isomer 1,2-propanediol cannot be 
avoided, being produced in a 1:1 ratio, resulting in a 
costly separation process. DuPont and Genencor 
International uses a genetically modified Escherichia coli 
strain to produce 1,3-PDO from glucose (Maervoet et al., 
2011). Glucose is a high cost feedstock, and biodiesel-
derived glycerol is becoming an abundant alternative 
feedstock, due to the increasing biodiesel production 
(Pyne, 2014). The price of corn-derived glucose is 
approximately US$ 0.28/kg (Gallardo et al., 2014) while 
the current price of biodiesel-derived glycerol varies from 
US$ 0.04 to 0.11/kg (Quispe et al., 2013). Some 
processes of biodiesel production generate crude 
glycerol a byproduct considered as waste, generally with 
no commercial value or acceptance, and its disposal 
costs is attributed to the biodiesel producers (Yazdani 
and Gonzalez, 2007). 

Glycerol may be used as carbon source in many 
bioprocesses, and one promising exploitation is to 
produce 1,3-PDO by Klebsiella pneumoniae and 
Clostridium butyricum (Papanikolaou and Aggelis, 2009; 
Rymowicz et al., 2006). Production from crude glycerol 
from biodiesel can contribute to the reduction of 
environmental pollution and commercial valorization of 
this carbon source and to lower the production of 1,3-
propanediol. But intrinsic bottlenecks limiting these 
processes are the potential pathogenicity of K. 
pneumoniae, and the requirement of total anaerobic 
conditions for Clostridium spp., which although it is not 
vitamin dependent, the enzyme from Clostridium spp. is 
oxygen sensitive, requiring therefore, totally anaerobic 
cultures (Kaur et al., 2012). 

The production of 1,3-PDO is connected to the process 
of glycerol oxidation. Glycerol enters the cell by glpF 
(glycerol facilitated transport), or by diffusion (Maervoet et 
al., 2011). After entering the cell, it may follow two routes. 
In the first one, it suffers oxidative dehydrogenation by a 
NAD

+
 dependent glycerol dehydrogenase, becoming 

dihydroxyacetone (DHA). DHA is then phosphorylated to 
dihydroxyacetone phosphate by an ATP-dependent DHA 
kinase. Through a parallel process, glycerol is 
dehydrated to form 3-hydroxypropionaldehyde (3-HPA) 
by glycerol dehydratase (EC 4.2.1.30), which in K. 
pneumoniae is B12-dependent, composed by three 
peptides encoded by dhab1, dhaB2, and dhaB3. Then, 3-
HPA is reduced to 1,3-PDO by 1,3-propanediol 
oxidoreductase (EC 1.1.1.202) linked to NADH (Oh et al., 
2012; Yazdani and Gonzalez, 2007). 

In K. pneumoniae the overall reductive reaction rate is 
limited, firstly because this reaction is mediated by 
cyanocobalamin (vitamin B12). Furthermore, substrate 
inhibition may occur, with an irreversible binding of 
cobalamin with the enzyme to form alkylcobalamines.  
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However, reactivation factors, encoded by genes gdrA 
and gdrB (or dhaF and dhaG), swap the inactivated 
cobalamin for a new molecule of vitamin B12, requiring 
the presence of magnesium ions (Mg

2+
) and with 

consumption of 1 ATP. The resultant Apo enzyme 
rebinds coenzyme B12, and glycerol conversion to 3-
HPA resumes. To avoid low activity of the enzyme, the 
amount of glycerol should be controlled and vitamin B12 
to the medium should be added (Yamanishi et al., 2012; 
Nakamura and Whited, 2003; Shibata et al., 2002; 
Kajiura et al., 2001, Daniel et al., 1998). As a 
consequence of the normal catalytic cycle with glycerol, 
the coenzyme B12 is occasionally rendered inactive 
(B12-inact). The B12-inact remains tightly bound to the 
dehydratase and catalysis ceases. An auxiliary enzyme, 
glycerol dehydratase reactivase, facilitates the 
dissociation of the B12-inact and glycerol dehydratase 
(EC 4.2.1.30). The resultant apoenzyme rebinds and 
glycerol conversion to 3-HPA resumes (Nakamura and 
Whited, 2003). 

E. coli naturally grows on glycerol under aerobic 
conditions, but several researchers have been trying to 
genetically modify it to produce 1,3-PDO, thus making 
glycerol a valuable carbon source (Ma et al., 2009). By 
metabolic engineering, it is possible to manipulate 
metabolic routes, obtain high value products, and reduce 
or eliminate the production of undesirable byproducts 
(Cheng et al., 2005). E. coli, which does not have a dha 
system, is unable to grow anaerobically on glycerol 
without an exogenous electron acceptor and does not 
produce 1,3-PDO (Tong et al., 1991). Although several 
researches have been done on 1,3-PDO production 
using glycerol, the 1,3-PDO productivities and, in 
particular, the product concentrations obtainable with 
engineered organisms harboring the 1,3-PDO pathway 
have been low (less than 0.1 g/L with recombinant S. 
cerevisiae and 6.5 g/L with recombinant E. coli AG1) 
compared to those of natural 1,3-PD producers (Biebl et 
al., 1999). While other papers have reported high 
amounts of 1,3-PDO produced by Engineered E. coli 
harboring genes from Clostridium sp., the limitation of 
being very sensitive enzymes to oxygen is a drawback in 
large scale use. Also, very few papers were successful 
using genes from K. pneumoniae, which is a great natural 
producer of 1,3-PDO and requires little vitamin B12, as 
we demonstrated in this work.  

The objective of this study was to construct two 
plasmids, expressing genes related to synthesis from K. 
pneumoniae GLC29 in order to produce 1,3-PDO from 
glycerol: One plasmid harboring the genes dhaB1, 
dhaB2, dhaB3, encoding glycerol dehydratase, and dhaT 
encoding 1,3-PDO oxidoreductase, under control of the 
R0010 promoter, while the other plasmid had  in  addition 
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Figure 1. Designed plasmids and contruct containing dha genes for 1,3-propanediol - Plasmid pSB1C3_JJ04450 was 
used as template to derive pSB1C3dhaB123T and pSB1C3dhab123TFG. 

 
 
 
the coding DNA for the glycerol dehydratase reactivation 
factors dhaF and dhaG. This approach was done using 
standard parts from iGEM and genes extracted from a 
wild type bacterium (K. pneumoniae GLC29), which have 
been previously reported as a good 1,3-PDO producer. 
Furthermore, Gibson's Assembly (Gibson et al., 2009) 
was used for all cloning, eliminating the need to 
previously sequence or modify the wild genes for 
traditional cloning, cloning multiple genes at once, and 
eliminating scars from restriction enzymes. Both 
constructs for 1,3-PDO production were compared in 
micro-aerobic and anaerobic conditions, and then 
evaluated for 1,3-PDO production in bioreactors using 
anaerobic conditions and two-stage fermentations. 
 
 
MATERIALS AND METHODS 

 
Strains and maintenance  
 

K. pneumoniae CLG29 was isolated from bryophytes grown on the 
base of leaf stalks of Terminalia catappa at UNESP – Universidade 
Estadual Paulista, Rio Claro, Brazil and characterized as a new 1,3-
PDO producer (da Silva et al., 2014). E. coli TCS099 - ΔmgsA, 
ΔldhA, ΔfdrA, Δzwf, Δndh, ΔmaeB, Δpta, ΔpoxB, ΔmhpF, ΔadhP 
and ΔadhE (Trinh and Srienc, 2009), was used at University of 
Tennessee Knoxville, and E. coli SZ63, W3110 mutant, ΔfocA-
pflB::FRT, ΔfrdBC ΔadhE::FRT, ackA::FRT (Zhou et al., 2003) was 
kindly sent from the University of Florida to the Department of 
Biochemistry and Microbiology, Biosciences Institute of Rio Claro, 
Univ. Estadual Paulista – UNESP. Both used as hosts for vectors 
assembled and experiments. Cultures were kept at -80°C for long-
term storage, and reactivated in Luria-Bertani medium (LB) prior to 
experiments. 
 
 
Cloning  
 
Plasmid backbone pSB1C3_RFP containing BBa_R0010 promoter, 
sensitive  to  LacI   and   CAP   protein,   and   BBa_B0015   double 

terminator (Figure 1) was used as template for the plasmid 
backbone. BBa_B0034 was designed within the primers, which 
sequence was obtained from iGEM. Primers corresponding to 
genes were designed using known sequences from K. pneumoniae 
strains 342, MGH78578, and KTCC 2242, in which complete 
genome is available at ncbi.nlm.nih.gov (three genomes homology 
regions were identical to the primers designed). All primers were 
designed using Gibson’s Assembly (Gibson et al., 2009), with a 40 
base pair overlap with the next sequence (Table 1), dhaB1_F was 
designed with a 40 base pair overlap with the promoter and 
dhaT_term_R was designed with a 40 base pair terminator overlap. 
Genes were isolated from K. pneumoniae GLC29 using PCR and 
the primers listed in Table 1.  

All genes (Figure 2) used for cloning were amplified using the 
primers designed using Phusion

®
 polymerase HF, gel and purified 

using Zymo Research
®
 Zymoclean™ Gel DNA Recovery Kit and 

ligated using Gibson Assembly (2009), cleaned and concentrated 
using Zymo Research

®
 DNA Clean and Concentrator™. Plasmids 

were extracted from E. coli cultures after 6 h growth in LB media 
with 50 µg/ml chloramphenicol, using Zymo Research

® 
- Plasmid 

Miniprep™ - Classic. Construction of plasmids were performed 
using Gibson’s Assembly (GA) isothermal protocol (Gibson et al., 
2009). Plasmid pSB1C3-dhaB123T carries the genes dhaB1, 
dhaB2, dhaB3 (glycerol dehydratase), dhaT (1,3-propanediol 
oxidoreductase), while pSB1C3-dhaB123TFG harbors the above-
mentioned genes and also dhaF and dhaG (glycerol dehydratase 
reactivase). Plasmids were sequenced by capillary electrophoresis 
ABI 3730 genetic analyzer.  

 
 
Production of 1,3-propanediol  

 
Confirmed plasmids were extracted from Top10 using plasmid mini-
prep and transformed into competent E. coli TCS099 by heat 
shock. Transformed E. coli TCS099 hosting pSB1C3dhaB123T and 
pSB1C3dhaB123TFG were characterized for 1,3-PDO production 
in minimal medium (glycerol 20.0 g/L; KH2PO4 3.5 g/L; K2HPO4 5.0 
g/L; (NH4)2HPO4 3.5 g/L; MgSO4.7H2O 0.25 g/L; CaCl2.2H2O 0.015 
g/L; vitamin B12 0.25 mg/l; chloramphenicol 30.0 µg/ml). 
Experiments were performed in test tubes in aerobic, anaerobic and 
micro-aerobic conditions. Periodically, samples of 1 ml were 
collected  and  centrifuged  at  10,000 g  for  10 min.   The   cell-free  



Neto et al.          1803 
 
 
 

Table 1. Primers designed for 1,3-propanediol constructs - Gibson’s assembly. 
 

Primer Sequence 

dhaB1_F For aattgtgagcggataacaatttcacacaaaagaggagaaaATGAAAAGATCAAAACGATT 

dhaB1_R Rev GTTGTCTGTTGCATtttctcctctttTTATTCAATGGTGTCAGGCTG 

dhaB2_F For ACACCATTGAATAAaaagaggagaaaATGCAACAGACAACCCAAATTC 

dhaB2_R Rev GTTTTCTCGCTCATtttctcctctttTCACTCCCTTACTAAGTCGAC 

dhaB3_F For TAGTAAGGGAGTGAaaagaggagaaaATGAGCGAGAAAACCATGCGCG 

dhaB3_R Rev ATACGATAGCTCATtttctcctctttTTAGCTTCCTTTACGCAGCTTATG 

dhaT_F For GTAAAGGAAGCTAAaaagaggagaaaATGAGCTATCGTATGTTTGATTATC 

dhaT_R Rev GCTATTAACGGCATtttctcctctttTCAGAATGCCTGGCGGAAAATC 

dhaF_F For GCCAGGCATTCTGAaaagaggagaaaATGCCGTTAATAGCCGGGATTG 

dhaF_R Rev GGTGAAAGCGACATtttctcctctttTTAATTCGCCTGACCGGCCAG 

dhaG_F For GTCAGGCGAATTAAaaagaggagaaaATGTCGCTTTCACCGCCAGGCG 

dhaG_R Rev cagtctttcgactgagcctttcgttttatttgatgcctggTCAGTTTCTCTCACTTAACG 

dhaT term_R Rev cagtctttcgactgagcctttcgttttatttgatgcctggTCAGAATGCCTGGCGGAAAA 

pSB1C3_F For Ccaggcatcaaataaaacgaaaggctcag 

psB1C3_R Rev Ttctcctcttttgtgtgaaattgttatcc 
 

Dotted underlined, Promoter overlap; underlined, ribosome binding site; Dot, dash underlined, terminator overlap 

 
 
 

 
 

Figure 2. Genes amplified with Phusion® polimerase. GeneRuler 1 kb Plus DNA Ladder 75 to 
20,000 base pairs. 

 

 
 
supernatant was filtered (0.22 µm) and analyzed by high 
performance liquid chromatography (HPLC) using ion exchange 
column Phenomenex Rezex ROA (300 mm × 7.8 mm) at 60°C and 
0.005 M H2SO4 solution as mobile phase at 0.5 ml/min flow rate, 
equipped with UV and RI detectors. External standards were 
ethanol, 1,3-PDO, propionic acid, acetic acid, 2,3-butanediol and 
glycerol.  

Two-stage  fed-batch  fermentations  were  performed  with  four 

different aeration conditions on initial 24 h (first stage). Medium 
composition was glycerol 20 to 45 g/L, tryptone 10 g/L, KH2PO4 
0.136 g/L, (NH4)2HPO4 3.5 g/L, MgSO4.7H2O 0.48 g/L, CaCl2 0.15 
g/L, vitamin B12 1 mg/L, sodium selenite 1 µM, and 
chloramphenicol 30 µg/ml. After 24 h, remaining glycerol was 
quantified, and one pulse of glycerol was fed to reach 50 g/L in the 
bioreactor. The second stage was set into anaerobic conditions, 
and pure nitrogen gas was  pumped  at  0.05 L/min.  Samples  were  
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Figure 3. Production in anaerobic conditions (induction at time zero with IPTG 500 µM). pSB1C3dhaB123TFG; B. pSB1C3dhaB123T; 
C. pSB1C3_RFP. 

 
 
 
collected and analyzed as described previously.  

 
 
RESULTS AND DISCUSSION 
 
Production of 1,3-propanediol  
 
Production of 1,3-PDO and influence of glycerol 
dehydratase reactivase (dhaF and dhaG) were evaluated 
in micro-aerobic and anaerobic conditions. Induction was 
performed with 500 µM of IPTG at the first minute of the 
process and TCS099 with pSB1C3_RFP was used as 
negative control. Anaerobic culture showed little growth 
and low 1,3-PDO production. Host with 
pSB1C3dhaB1234TFG presented the fastest growth and 
the best production, followed by pSB1C3dhaB123T, both 
presented faster growth than the negative control (Figure 

3).  
Using micro-aerobic condition (Figure 4), growth and 

1,3-PDO production were higher than in anaerobic 
cultures, in which the strain containing 
pSB1C3dhaB123TFG reached up to 2.5 g/L of 1,3-PDO 
in 72 h (0.41 g/g yield). Glycerol consumption was more 
consistent and it was possible to verify that 
pSB1C3dhaB123TFG consumed more glycerol than the 
other experiments.  

It is important to note that in this experiment, 250 µg/l of 
vitamin B12 was added to a minimal medium; besides, 
fermentation strategies and media were not optimized 
yet. In a similar result, Skraly et al. (1998) demonstrated 
production of 1,3-PDO up to 6.3 g/L out of 9.33 g/L of 
glycerol in a 4-liter fed-batch E. coli AG1/pTC53 
fermentation using 14 µg/l of vitamin B12. Using 
statistical design, Zhang et al. (2006) constructed a novel  
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Figure 4. Growth in micro-aerobic conditions (induction at time zero with IPTG 500 µM). A. pSB1C3dhaB123TFG; B. 
pSB1C3dhaB123T; C. pSB1C3_RFP. 

 
 
 
E. coli recombinant using the complete dhaB gene set 
comprised of three different subunits dhaBCE, (2.8 kb) 
from Citrobacter freundii assembled into pHsh-yqhD. By 
the experimental design using 61.8 g/L of glycerol, 6.2 
g/L of yeast extract, and 49 mg/l of vitamin B12, Zhang et 
al. (2006) produced 43.8 g/L of 1,3-PDO in a 5-liter 
bioreactor in aerobic conditions (0.8 vvm). However, due 
to the current high price of vitamin B12, the use of 49 
mg/l is not economically feasible.  

Cameron et al. (1998) cloned from K. pneumoniae the 
genes dhaB and dhaT to E. coli, including several ORFs 
(dhaB3, dhaB3a, dhaB4, and dhaB4a) from dhaB 
complex. A series of synthetic plasmids with dhaB and 
dhaT genes disposed in the same transcription direction 
and under the same promoter were built, and 1,3-PDO 
concentration reached over 70 g/L in 5 L fermenter, using 
fed batch fermentations, reaching a yield of 0.39 g1,3-

PDO/gglycerol (0.48 mol/mol), but using aerobic conditions. 

The main byproduct was 2,3-butanediol, reaching nearly 
20 g/L. Importantly, in our case; no 2,3-butanediol was 
detected on fermentations using the different plasmids 
and strains. Different from this work, the aim was to 
produce 1,3-PDO anaerobically using glycerol.  

 
 

Reactor fermentation with E. coli SZ63 
 
In an effort to maximize 1,3-PDO yield and concomitantly 
minimize production time and byproduct, Tang et al. 
(2009) established a two-stage two-substrate fermentation 
for producing 1,3-PDO by an engineered E. coli K-12 
ER2925 strain, and dhaB1 and dhaB2 from C. butyricum 
SYU 20108 were cloned and expressed in the host strain. 
On the first stage from 0 to 10 h, dissolved oxygen was 
maintained above 40% air saturation, glucose was added 
continuously to maintain up to 25 g/L until a final biomass 
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Figure 5. Fed-batch culture of E. coli SZ63+pSB1C3dhaB123TFG - 1,3-propanediol g/L production in two stage fermentation. First Stage (0-
24 h): a. Anaerobic; b. 5% pO2 ; c. 15% pO2; d. 20% pO2. All second stages (24-84 h) is anaerobic; feed pulse is at 24 h. 

 
 
 
of 26 g/L DCW was reached. Then, the second stage 
involved replacement of glucose medium and byproducts 
from the first stage with new fresh glycerol fermentation 
medium every 2 h, shifting the temperature to 42°C, 1,3-
PDO the authors claim reaching a final concentration of 
104.4 g/L. Therefore a similar approach was figured out 
enriching the culture with pO2 and comparing with a 
anaerobic control.  

E. coli SZ63 harboring pSB1C3dhaB123TFG was used 
for these experiments in bioreactors at UNESP - 
Universidade Estadual Paulista, Brazil, since E. coli 
TCS099 was not available for importation from the host 
university. Fermentations in bioreactors are shown in 
Figure 5. The first fermentation (Figure 5a) started 
anaerobically while nitrogen gas was used to purge 
oxygen out of the fermenter prior to the start. Despite the 
18 g/L of glycerol consumed in the initial 24 h, little 1,3-
PDO was produced (1.69 g/L) and 0.41 g/L of DCW was 
reached. E. coli SZ63 harboring our plasmid improved 
DCW by 3 fold, glycerol consumption improved 90 fold, 
and 1,3-PDO production improved by 11 fold on the first 
24 h of process when compared to essays in tubes using 
E. coli TCS099 and minimal media. Glycerol was fed (18 
g/L) at 24 h, but even though recreating Gonzalez (2012) 

optimal conditions for glycerol fermentation had tried, 
only 3.23 g/L of 1,3-PDO was produced, and 6.12 g/L of 
glycerol consumed after 84 h. However, this represents a 
9-fold improvement in 1,3-PDO production. Still, 
conversion rates were limited by the amount of cells, due 
to slow growth and consequent low cell density. No 2,3-
butanediol was observed, but 1.4 g/L of ethanol was 
detected in the end of the fermentation, that could be 
residual from the antibiotic mixture dissolved in ethanol.  

Setting up to 5% pO2 for the initial 24 h fermentation 
(Figure 5b) resulted in 15 g/L of glycerol consumed, 3.27 
g/L of DCW and 3.15 g/L of 1,3-PDO produced in the 
initial 24 h. This means that more cells were able to 
produce more 1,3-PDO. In the second stage, fermentation 
was shifted to anaerobic conditions with nitrogen purge, 
18 g/L of glycerol was fed into the bioreactor, and after 60 
h, 6.1 g/L of 1,3-PDO was reached. This result suggests 
that E. coli SZ63 is not able to grow in anaerobic 
condition using glycerol as sole carbon source, even 
when 1,3-PDO pathway was inserted as a way to recycle 
NADH, so 1,3-PDO could be the last electron acceptor. It 
is suggested that micro-aerobic conditions are therefore 
necessary for growth using glycerol as sole carbon 
source. 



 
 
 
 

The best conditions were reached using 15% pO2 

(Figure 5c), which resulted in 3.5 g/L of 1,3-PDO, 4.2 g/L 
of DCW, and 14.4 g/L of glycerol consumed on the initial 
24 h. Compared to initial essays in tubes previously 
described, DCW was improved 8.5-fold, 1,3-PDO was 
improved 6.5-fold, and glycerol consumption was 
improved 16.8 fold. Production continued on the second 
stage in anaerobioc conditions, reaching 11.1 g/L after 60 
h, which improved 4.1-fold. No 2,3-butanediol was 
observed, and residual 0.5 g/l of ethanol was detected.  

When 20% pO2 was employed (Figure 5d), glycerol 
was depleted after 24 h. During the first 24 h, 6.5 g/L of 
1,3-PDO was produced. On the second stage, in 
anaerobic conditions, however, there was no consumption 
of glycerol nor substantial 1,3-PDO production. This 
could mean that cells were stressed from glycerol 
depletion on the initial 24 h. Similar to the other 
experiments, no 2,3-butanediol or ethanol was observed 
during the 84 h of experiment. 

Transferring a biosynthetic pathway to a non-native 
producer faces several difficulties, such as the non-native 
pathways overexpression can disrupt the intrinsic 
metabolism in the host, using most of the essential 
precursors for growth or maintenance. Furthermore, 
pathways re-engineering frequently leads to imbalanced 
gene expression, which creates bottlenecks in the 
biosynthetic pathway that could that reduce production of 
the wanted compound (Atsumi et al., 2008). New 
investigations on protein expression or mRNA could 
elucidate better comprehension on limiting factors on the 
production of 1,3-PDO in this work.  

Previous studies on D-lactate production have shown 
that an initial period of aeration in complex media can be 
used to boost the growth of D-lactate-producing E. coli 
strains containing mutations in phosphoenolpyruvate 
carboxylase and phosphotransacetylase genes resulting 
in shorter time for fermentation. Initial aeration of an 
SZ58 culture eliminated the lag phase resulting in 10-fold 
increase in cell yield within the initial 24 h, which 
accelerated glucose conversion to lactate and reduced 
the time required to complete the process (Zhou et al., 
2003).  

Further fermentations should be performed to optimize 
these conditions. Among the evaluated strains, glycerol 
was not efficiently fermented to support cell growth and 
1,3-PDO production. Glycerol is a highly-reduced 
substrate and maintenance of redox balance is 
challenging specially in anaerobic conditions. In the 
absence of oxygen or other electron acceptor, E. coli is 
not able to use glycerol as sole carbon source efficiently. 
The incorporation of glycerol as a carbon source to cell 
mass results in production of reducing equivalents, in 
which H2 plays an important role, participating as electron 
donor for several reactions. If H2 is decreased, this does 
not happen and fermentation proceeds. Increasing 
headspace dilutes H2, and also flushing it out with an 
inert  gas,  such  as  argon,  nitrogen,  or  CO2,   improves  
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fermentation (Gonzalez, 2012).  

Glycerol can be oxidized to dihydroxyacetone (DHA) by 
the GldA enzyme, a type II glycerol dehydrogenase, 
which is encoded by gldA in E. coli, however it is usually 
not expressed in wild type strains. Activation of this gene 
requires inactivation of glpK, glpR and glpD followed by 
mutagenesis and selection procedures, which resulted in 
a strain that recovered the ability to metabolize glycerol, 
but not the ability to ferment glycerol (Gonzalez, 2012). In 
E. coli, there are two glycerol-3-phosphate 
dehydrogenases, but only one can use NAD

+
 as an 

electron acceptor (Lin, 1976). Only one of these enzymes 
is able to donate electrons to the fumarate reductase 
complex, producing succinate from fumarate. It was 
demonstrated that the quantity of succinate produced by 
their E. coli strain corresponded to only 4% of the glycerol 
metabolized, therefore, it is not able to grow in anaerobic 
environment (Skraly et al., 1998). Production and growth 
of 1,3-PDO was reported by Tong et al. (1991) using a 
cosmid harboring dha genes from K. pneumoniae ATCC 
25955, in which E. coli AG1/pTC1 produced up to 0.46 
mol/mol of 1,3-PDO after 120 h, but little 1-3-PDO was 
produced. DHA and glycerol were added to a defined 
medium, and also the cosmid had a dha kinase and 
glycerol dehydrogenase from K. pneumoniae, which 
might explain the cell growth reported in anaerobic 
environment. New experiments cloning dha kinase from 
K. pneumoniae should be performed to evaluate cell 
growth in anaerobic conditons.  

Optimum glycerol fermentation by E. coli occurs at 
slightly acid pH of 6.3, 10-20% CO2 or higher, high 
concentrations of glycerol, up to 100 g/l, 200 rpm, 37°C, 
0.01 L/min argon or nitrogen, low potassium (less than 10 
mM) and phosphate concentrations (from 50 to less than 
1.3 mM) are preferred, because high concentration of 
these ions inhibits glycerol dehydrogenase and DHA 
kinase, and furthermore increases methylglyoxal toxicity. 
Tryptone supplementation is additionally required when 
DHA is not added (Gonzalez, 2012). These conditions 
were replicated in these experiments on bioreactors, but 
fermentation of glycerol did not result in good cell growth 
and high productivity. 

High concentration of glycerol is required to GldA, due 
to its low Km, and acid condition favors its reductive 
activity, while neutral or alkaline conditions increases its 
oxidative activity. Also, alkaline conditions increase 
methylglyoxal toxicity. To prevent cytoplasmic 
acidification, E. coli produces CO2 and H2 from formic 
acid, but H2 can negatively influence glycerol fermentation 
(Gonzalez, 2012). Besides, high concentrations of 
glycerol, over 49 g/L, is known to decrease 1,3-PDO 
production, since it favors the inactivation of glycerol 
dehydratase (GDHt) (da Silva et al., 2014). 

The overexpression of GDHt leads to serious growth 
deficiency of K. pneumoniae. Instability of the plasmids 
bearing the genes encoding GDHt and/or 1,3-PDO 
oxidoreductase    were   responsible   for   the    observed 
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phenomena due to an imbalanced conversion of glycerol 
to 3-HPA and its toxicity. Similar research using resting 
cell systems, in which growth was stopped while 
metabolic activity was maintained, eliminates 
disturbances associated with cell growth. Overexpression 
of 1,3-PDO oxidoreductase led to faster glycerol 
conversion and 1,3-PDO production. After 12-h 
conversion, it improves 1,3-PDO yield by 20.4%, and 
boosts product/substrate yield from 50.8 to 59.8% 
(mol/mol) (Song et al., 2010). Further investigations 
should be done to address if 3-HPA is occurring in E. coli 
SZ63 during 1,3-propanediol production and see the 
need to overexpress 1,3-PDO oxidoreductase.  

Zhang et al. (2006) constructed a similar plasmid in E. 
coli with genes from Citrobacter freundii, and using 
experimental design from fixed concentrations: 61.8 g/L 
glycerol, 6.2 g/L of yeast extract and 49 mg/L of vitamin 
B12, achieved 1,3-PDO production of 41.3 g/L. Ma et al. 
(2009) constructed a plasmid containing dhaB and dhaT 
genes in E. coli and expressed both genes in the same 
direction, successfully producing 11.3 g/l of 1,3-PDO from 
40 g/l glycerol.  
 
 

Conclusion 
 
E. coli hosting pSB1C3dhaB123TFG was able to produce 
higher amounts of 1,3-propanediol than the plasmid 
pSB1C3dhaB123T. Genes dhaF and dhaG are very 
important for the production of 1,3-propanediol, specially 
with lower concentrations of vitamin B12 (from 0.25 to 1 
mg/L). Moreover, aeration on the initial 24 h up to 15% 
pO2 is able to increase 1,3-PDO production and 
productivity with E. coli SZ63, reached 11.3 g/L of 1,3-
PDO produced in 60 h. Bottlenecks on glycerol fermenta-
tion by E. coli still need to be addressed, adding 1,3-PDO 
as a NADH recycle metabolic pathway did not improve E. 
coli growth on glycerol on the absence of oxygen, that 
could mean regulation issues such as 3-HPA toxicity or 
an anaerobic glycerol-3-phosphate dehydrogenase 
deficiency from E. coli. New fermentation strategies could 
be performed to improve productivity and production, 
such as using glucose and glycerol together, and further 
engineer E. coli to efficiently ferment glycerol. Also, 
protein expression and mRNA analysis could elucidate 
bottlenecks on glycerol metabolism by E. coli hosting 
pSB1C3dhaB123TFG and improve 1,3-PDO and cell 
growth. Improving glycerol uptake via cloning K. 
pneumoniae dhaD, dhaK, dhaL and dhaM to convert 
glycerol to DHA and then to glyceronephosphate and 
pyruvate could increase cell growth in anaerobioc 
conditions, furthermore generating more NADH for 1,3-
PDO production. 
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A strain of Aspergillus niger PR-142 native to northern coast of Peru was subjected to successive 
processes of mutagenesis by ultraviolet light (UV) irradiation at 253.7 nm to increase the production of 
fructooligosaccharides (FOS). An initial selection was made by considering the mutants with increased 
invertase activity followed by the measurement of β-fructosyltransferase (FTase) activity both in 
mycelium and extracellular environment. Five selected mutants, which showed increased values of 
mycelium invertase activity (ranging from 101 to 128% as compared to the parent strain) at 40°C and 
sodium dodecylsulfate 0.15 (w/v), were  grown in a fermentative medium in 50 mL conical tubes on a 
rotary shaker, and their FTase activity was determined. The 6-M69 mutant showed the most active 
mycelium activity of 1.5 fold as compared to the parent strain. When the same reaction was performed 
between 1 to 4 h, at the 3

rd
 h, the mycelium FTase activity significantly increased up to 7 and 3 times in 

the mutant and parental strain, respectively. Finally, 4 mutants and the parental PR-142 were genetically 
characterized using inter simple sequence repeat polymerase chain reaction (ISSR-PCR) molecular 
markers. This analysis showed a significant 33% polymorphic bands between the parent and mutant 
markers, and 20 bands were unique to the mutants. 
 
Key words: Aspergillus, mutagenesis, β-fructosyltransferase, fructooligosaccharides, inter simple sequence 
repeat polymerase chain reaction (ISSR-PCR). 

 
 
INTRODUCTION 
 
Fructooligosaccharides (FOS) are prebiotics with known 
beneficial  properties,   including    growth    promotion  of 

Bifidobacterium species, prevention of colon cancer, and 
reduction  of  cholesterol  levels  and  triglycerides  in  the  
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blood. It can also be considered as a calorie-free and 
non-cariogenic sweetener (Maiorano et al., 2008). FOS 
can be obtained from different vegetables such as garlic 
onions, artichokes, asparagus, bananas, rye wheat and 
tomatoes (Sangeetha et al., 2005). However, commercial 
FOS are enzymatically produced either by hydrolysis of 
inulin (to produce oligofructoses) catalyzed by inulinases 
(EC 3.2.1.7) or by transfructosylation of sucrose 
employing sucrose fructosyltransferases (FTase, EC 
2.4.1.99) and β-D-fructofuranosidases (also termed 
invertases) (FFase, EC 3.2.1.26) (Maiorano et al., 2008). 
These classes of enzymes are widely distributed in 
plants, fungi and bacteria kingdoms and most of them 
belong to the Glycoside Hydrolase families 32 (GH32) 
and 68 (GH68) (Olarte et al., 2016). Although, the 
physical and chemical characteristics of the molecular 
structure vary in many microorganisms, they all have 
both hydrolytic and transfer activities (Dominguez et al., 
2013). 

Although, FOS has been produced by commercial 
microorganisms for more than twenty years, it is still 
necessary to continue to identify new FFase(s) of high 
yield as well as the genes involved in its synthesis. This 
is the reason why the search for microorganisms with 
these characteristics such as Penicillum, Aerobasidium, 
Fusarium and mainly Aspergillus species is continuously 
reported (Muñiz et al., 2016). It should be noted that 
Aspergillus niger is a filamentous fungus of the group of 
black Aspergillus that are widely disseminated in the 
environment and is widely used in biotechnology 
industries due to its great secretory capacity of a large 
amount of enzymes and organic acids, among other 
things. In addition, many of these products have the 
generally recognized as safe (GRAS) status by the US 
Food and Drug Administration (FDA). Different 
techniques have been used in order to increase the 
production of FOS and among them are recombinant 
DNA technologies that have allowed the expression of 
the FTase gene in plants (Heyer and Wendenburg, 
2001), bacteria and yeasts (Zhang et al., 2015). In the 
specific case of increasing FOS productivity, although 
there are very few reports on the use of ultraviolet (UV) 
irradiation mutagenesis, Guilarte et al. (2009) obtained 
three mutants of Aspergillus oryzae, known as IPT-745, 
IPT-746 and IPT-748, which showed values ranging from 
1.5 to 1.8-fold of activity, that was bound to the mycelium 
of the parent strain. The ability of UV light to produce 
genetic variation is known and has been used on 
numerous occasions to produce metabolic changes that 
increase the efficiency of some particular enzymes of 
interest. The inter simple sequence repeat polymerase 
chain reaction (ISSR-PCR) molecular markers have been 
successfully used to study the genetic variability of 
Aspergillus species, but there are no reports on the use 
of this marker in UV mutants in order to better compare 
them with the parent strain. 

The present study aimed to 1) increase FOS production,   
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using a native A. niger strain, via UV irradiation, and 2) 
characterize the mutants in reference to the parent strain 
using an ISSR-PCR as molecular marker. 
 
 
MATERIALS AND METHODS 
 
Microorganism and fermentative medium 
 
The native strain of A. niger PR-142 isolated from sugarcane soil 
during 2015 at the north coast of Peru were used in this research. 
The isolate was identified in the Biotechnology Laboratory of the 
Continental University S.A.C, Huancayo, Peru (Gutarra et al., 
2017). All strains including the mutants were grown on potato 
dextrose agar (PDA) medium at 30°C for 5 to 7 days. The produced 
spores were filtered and separated from the mycelium with the help 
of cotton swabs in sterile 0.1% (w/v) Tween 80 medium, and they 
were quantified using a Neubauer chamber. The fermentative tests 
were carried out in 250 ml flasks containing 50 ml of fermentative 
medium (g/L): sucrose 3.0, NaNO3 0.3, KH2PO4 0.2, MgSO4.7H2O 
0.05, MnCl2.4H2O 0.02 and FeSO4.7H2O 0.001 with a pH of 5.5. 
 
 

Growth studies 
 

Adequate doses of sodium dodecylsulfate (SDS) were evaluated in 
order to restrict the growth of mycelia and to have isolated strains. 
The evaluation comprised a range of 0.001 to 0.3% (w/v), resulting 
in the growth of hyphae being measured for a period of between 3, 
4 and 5 days. Different doses of ultraviolet (UV) radiation were 
evaluated by using two 253.7 nm germicidal UV lamp (15W G15T8, 
Philips Ltd.) within a time range of 1 to 10 min, fixed as an optimal 
time that allowed the survival of only 5% of the spores used. 

 
 
Production of mutants 

 
A concentration of 10

5
 spores was spread on glass plates coated 

with PDA medium that was supplemented with SDS and placed at a 
distance of 15 cm from two germicidal UV lamps (15W G15T8, 
Philips Ltd.) for 4 min. The spores were maintained for 30 min in 
absolute darkness and incubated at 40°C overnight and, then, at 
30°C for 5 to 6 days. The chosen colonies were those that at first 
glance, presented typical morphology while those of strange 
appearance were discarded. 

 
 
Selection of mutants based on FFase activity 

 
As an initial step, the initial selection of promising mutants was 
based on the activity of FFase (invertase) secreted by them 
according to the methodology reported by Guilarte et al. (2009) that 
consists of taking circular fragments of mycelium of 7 mm in 
diameter as a source of enzyme. In the second stage, 10

7
 spores 

were grown in 250 ml flasks with 50 ml of the fermentation medium 
for 72 h at 30°C and 200 rpm in an orbital shaker. The obtained 
mycelia were vacuum filtered using a polysulfone (PSF) filtration kit 
(Nalgene Ltd.) and Whatman® grade 1 qualitative filter paper. The 
enzymatic reaction was carried out in a shaking water bath GFL 
1083 (Biovendis Ltd.) at 100 rpm for 60 min at 50°C with 50 ml 
conical tubes containing 1.2 ml of 0.2 M tris-acetate buffer at pH 5.5 
and using approximately 0.02 g of mycelium as the enzyme source. 
As the substrate, 3.7 ml of a sucrose concentration of 64% (w/v) 
was used. The amount of reducing sugars obtained was quantified 
by the 3,5-dinitrosalicylic acid (DNS) assay method as described by 
Miller (1959). In the first stage,  given  the  considerable  number  of  
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Table 1. Effect of sodium dodecylsulfate (SDS) on the colony size of Aspergillus niger PR-142. 
 

SDS (%w/v) 
Colony diameter (mm)* Percentage of reduction 

Day 3 Day 4 Day 5 Day 3 Day 4 Day 5 

0 23.7 ± 2.3 30.9 ± 0.8 39.2 ± 0.4 100 100 100 

0.01 18.0 ±1.8 28.5 ± 0.6 25.7 ± 0.3 92.2 65.6 65.6 

0.02 19.1 ± 1.9 26.3 ± 0.3 24.5 ± 0.4 85.1 62.5 62.5 

0.03 20.2 ± 2.0 23.3 ± 0.4 21.8 ± 0.4 75.4 55.6 55.6 

0.04 20.1 ± 2.0 23.3 ± 0.5 23.4 ± 0.5 75.4 59.7 59.7 

0.05 24.2 ± 2.4 29.0 ± 0.4 26.8 ± 0.6 93.9 68.4 68.4 

0.06 22.4 ± 2.2 26.2 ± 0.5 27.0 ± 0.5 84.8 68.9 68.9 

0.07 22.1 ± 2.2 27.8 ± 0.3 26.4 ± 0.3 90 67.3 67.3 

0.08 18.0 ± 1.8 19.9 ± 0.2 20.3 ± 0.4 64.4 51.8 51.8 

0.09 17.9 ± 1.7 19.9 ± 0.4 21.4 ± 0.9 64.4 54.6 54.6 

0.10 18.3 ± 1.8 20.0 ± 0.2 23.6 ± 0.1 64.7 60.2 60.2 

0.11 14.8 ± 1.4 17.8 ± 0.2 19.0 ± 0.0 57.6 48.5 48.5 

0.12 12.2 ± 1.2 13.4 ± 0.3 15.4 ± 0.6 43.4 39.3 39.3 

0.15 8.3 ± 0.8 10.3 ± 0.1 12.4 ± 0.2 33.3 31.6 31.6 
 

*Diameter of the colony is the average of 20 measurements. 

 
 
 
strains to be evaluated, only the absolute values of absorbance 
(optical density, OD 540 nm) were considered as the selection 
factor. In the second stage, FFase activity linked to mycelium was 
defined as that catalyzing the formation of 1 µmol reducing sugar 
per minute under the above conditions. 
 
 
Selection of mutants with high FTase activity 
 
The mycelial and extracellular FTase activities of the mutants that 
had the highest values of invertase activity were determined. For 
this purpose, the same methodology as described above was used, 
but with 0.3 ml of the fermentation broth as an enzyme source for 
the extracellular activity. The reaction products were analyzed by 
liquid chromatography with refractive index detector (LC-RID) on an 
Agilent Technologies 1220 Infinity LC system-1260 RID equipment 
(Boeblingen, Germany). Separation was performed on a HPLC 
column Kromasil® (100-NH2) (Akzo Nobel, Brewster, NY, USA) 
(250 x 4.6 mm, I.d. 5μm particle size) using 70:30 (v/v) 
acetonitrile/water as the mobile phase and isocratic elution with a 
flow rate of 1.0 ml min

-1
 for 120 min. One unit of fructosyltransferase 

activity was defined as the amount of enzyme producing 1 μmol of 
FOS (1-kestose and nystose) per min, under the assay conditions. 

 
 
Temporal profile of the reaction 
 
In a manner that is similar to that described above, the FTase 
reaction of the mycelium of the best mutant was evaluated for a 
period of 1 to 4 h using the portions of mycelia of about 0.02 g as 
the enzyme. The reaction was undertaken on a ThermoMixer® 
Comfort Shaker (Eppendorf, Cambridge, UK) at 800 rpm and 50°C 
using 2 mL tubes containing 0.42 ml of 0.2M tris-acetate buffer with 
pH at 5.5, and 1.3 ml of 64% (w/v) sucrose was used as substrate. 

 
 
Statistical analysis 

 
Data analysis was carried out using one-way analysis of variance 
(one-way ANOVA) and Turkey’s test by the Statistical  Package  for  

the Minitan16. Statistical significance was set at P < 0.05 and the 
results were expressed as means ± standard error of mean. 
 
 
Scrutiny of genetic variability 
 
The inter simple sequence repetitive (ISSR) molecular markers 
were used to test the ability of UV irradiation to produce genetic 
differences between mutants and parental PR-142. Genomic DNA 
extraction was performed using the methodology developed by Liu 
et al. (2000). The amplification via polymerase chain reaction (PCR) 
was performed with a volume of 25 μL having the same number 
and concentration of components as described by Neal et al. (2011) 
in a Mastercycler® Nexus Gradient Thermal Cycler (Eppendorf, 
Germany) using 6 ISSR primers (Integrated DNA Technologies) 
(Table 5). The thermal cycle of the PCR was also similar to that 
described by Neal et al. (2011). The PCR products were resolved 
on 1.5% agarose gels after staining with 1% ethidium bromide. The 
ISSR band patterns were assigned values of 1 (band presence) 
and 0 (band absence). The analyses were performed using the 
NTSYSpc program version 2.11. 
 
 
RESULTS 
 
Evaluation of the effect of SDS concentration on 
hyphal growth 
 
A reduction of 68.4% in the diameter of the colonies was 
achieved at a SDS concentration of 0.15% (w/v) on the 
fifth day of counting (Table 1). This size was sufficient 
and facilitated the separation of individual colonies 
averaging 12 to 15 colonies per plaque. 
 
 

Resistance to ultraviolet light 
 
The  parental   strain  was   characterized   by  presenting  
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Figure 1. Survival of Aspergillus niger PR-142 spores after exposure to UV radiation. 
Spores were inoculated in PDA medium. 

 
 
 

Table 2. Intracellular invertase activity of mutants and parental Aspergillus niger PR-142. 
 

 Strain OD (540 nm)
1
 Abs. relation (%) Mycelial activity AT (Ug

-1
)
2
 AT Relation (%) 

PR-142 0.718 ±  0.04 100 4.25  ± 0.40
c
 100.0 

6-M69 0.920 ± 0.01 128.13 7.43 ± 0.39 
a
 174.8 

6-M61 0.890 ± 0.09 123.96 5.49 ± 0.34
b
 129.2 

4-M37 0.782 ± 0.09 108.91 6.59 ± 0.80
a
 155.1 

5-M40 0.773 ± 0.02 107.77 4.41 ± 0.48
c
 103.8 

6-M65 0.731 ± 0.01 101.81 5.33 ± 0. 31
b
 125.4 

 
1
Sample mean (n=3) ± SD; 

2
Mean of six samples (n=6) ± SD. Means followed by the same letter are not significantly 

different according to the Tukey’s test (P<0.05). OD: optical density. 
 
 
 

different doses of resistance to UV irradiation which 
reached a lethality of 50% at 1.5 min (Figure 1). Optimal 
time occurs at 5 min (5% survival). Consequently, this 
time was used in all mutagenesis assays. 
 
 
Selection based on FFase activity 
 
From 666 surviving lineages, 5 of them had higher 
absorbance values than the parent strain and the 6-M69, 
6-M61 and 4-M37 mutants had higher mycelial activity 
(Table 2). The FFase activity showed that the mutant 6-
M69 was the most active but it did not present statistically 
significant differences with the 4-M37 strain. The other 5 
strains had lower activity values without observing 
significant differences neither between the 6-M65 and 6-
M61 strains nor between the parental and the 5-M40 
strain (Table 2). All the assays were carried out in 
sextduplicate. 
 
 
Selection of mutants with high FTase activity 
 
The   6-M69   and   4-M37  mutants  showed  the  highest  

values of mycelial activity of between 1.5 and 1.4 times 
the parental activity, respectively (Table 3). No significant 
difference in extracellular activity was observed between 
the parent strain and the 6-M69 mutant except with 
respect to strains 6-M61 and 4-M37 (Table 3). The cell 
mass had high values above 15 g/L

-1
 with a slight 

advantage for the 6-M69 mutant over the parent. The 
highest FOS production was presented by the 6-M69 
mutant strain, being 1.4 times higher than the parental 
production (Table 4) and the FOS composition was GF2 
(1-kestose) and GF3 (1-nistose), which in the case of 6-
M69 was 86.2% GF2 and 13.8% GF3. 
 
 
Temporal profile for 6-M69 
 
Figure 2 shows the course of consumption of sucrose 
and the synthesis of FOS of the 6-M69 and PR-142 
strains. The process reached the maximum FOS 
production at 2 h (147.7 g/L) in the case of PR-142 and at 
3 h (263.78 g/L) in the case of 6-M69 and after that, a 
gradual FOS decrease concomitant with an increase in 
sucrose was observed. In both cases, the sucrose 
underwent a  maximum  depletion between 2 and 3 h and  
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Table. 3 FTase activity of mycelial and extracellular parental Aspergillus niger PR-142 and its mutants. 
 

Strain 
Mycelial FTase activity  Extracellular FTase activity 

AT(U mg
-1

)
1
 AT (U ml

-1
)
1
 Relative AT (%)  AT (U ml

-1
)
1
 Relative AT (%) 

PR-142 0.75  ±  0.14
b
 11.44 ± 0.38

c
 100.0  7.42 ± 0.42

a
 100.0 

6-M69 1.15  ± 0.25
a
 17.78 ± 0.48

a
 155.4  6.74 ± 0.21

a
 90.8 

6-M61 0.89  ± 0.23
ab

 11.37 ± 0.28
c
 99.3  3.52 ± 0.19

b
 47.4 

4-M37 1.140  ± 0.20
a
 16.45 ± 0.40

b
 143.7  3.40 ± 0.02

b
 45.8 

 
1
Mean of six samples (n=6) ± SD; AT: fructosyltransferase activity. Means followed by the same letter are not significantly different 

according to the Tukey’s test (P<0.05). 

 
 
 

Table 4. Cell growth and FOS concentration of parental Aspergillus niger PR-142 and mutants. 
 

Strain Cellular mass (g/L) FOS (g/L) Sucrose (g/L) FOS (%)* 

PR-142 15.75  ±  0.65 18.38 ± 0.80 338.72 ± 20.41 4.70 ± 0.20 

6-M69 16.08  ±  1.19 25.72 ± 3.65 305.10 ± 36.03 7.18 ± 1.47 

6-M61 13.59  ±  2.55 20.90 ± 6.16 325.56 ± 23.90 5.57 ± 1.80 

4-M37 14.77  ±  1.31 25.51 ± 3.58 315.71 ± 27.80 6.92 ± 1.33 
 

*Percentage of FOS as the range between total FOS produced and total carbohydrate concentration. 
 
 
 

 
 

Figure 2. Kinetic reaction profile, FOS production and sucrose consumption 
of Aspergillus niger PR-142 (A) and 6-M69 (B) strains in 2 ml tubes in the 
range of 1 to 4 h. Nomenclature: GF2 (1-kestose), GF3 (1-nistose), GF4 (1- 
fructosyl-nystose). 
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Figure 3. FTase activity of Aspergillus niger PR-142 strain and the 6-M69 
mutant obtained in 2 ml tubes in the range of 1 to 4 h. 

 
 
 

Table 5. Characteristics and level of polymorphism of the primers used in the study. 
 

Code Sequence (5´- 3´) SPI* Polymorphic bands 

UBC809 AGAGAGAGAGAGAGAGG 1.46 6.00 

UBC817 CACACACACACACACAA 1.42 5.00 

UBC834 AGAGAGAGAGAGAGAGCT 1.28 7.00 

UBC895 AGAGTTGGTAGCTCTTGATC 2.74 10.00 

ISSR1 GTGGTGGTGGTGGTG 1.96 6.00 

ISSR2 GACAGACAGACAGACA 2.46 9.00 
 

*ISSR Initiator Index (Raina et al., 2001). 

 
 
 
at the end of this period its concentration increased. 
During the maximum production of FOS in the PR-142 
strain, the final product contained: 1-kestose (GF2-
65.2%), 1-nystose (GF3-29.3%) and 1-fructosyl-nystose 
(GF4-5.4%), while the 6-M69 strain contained: 1-kestose 
(GF2-48.4%), 1-nystose (GF3-44.8%) and 1-β-
fructofuranosyl nystose (GF4- 6.7%) and after that, a 
gradual decrease of all these products took place. The 
dramatic increase of FOS under these conditions is far 
superior to the tests in conical tubes of 50 ml on a 
rotating shaker, which became evident from the first h of 
reaction. The FTase activity increased and reached the 
maximum value at 3 h, of 83.8 and 56.1 U/mL for 6-M69 
and PR-142, respectively (Figure 3). This increase kept 
the activity ratio of 1.5-fold between the mutant and the 
parental strains which was, in turn, rather similar to that 
obtained in the test using conical tubes. 
 
 
Scrutiny of genetic variability 
 
The 6 primers (Table 5) gave a total of 42 loci with an 
average of 26.5 bands per individual of which 33% were 
polymorphic. A total of 20 bands were present only in  the 

mutants (Figure 4). Initiators UBC-895 and UBC-834 had 
the highest number of polymorphic bands and the highest 
ISSR primer index (SPI) (Raina et al., 2001). The 
dendrogram obtained (Figure 5) at a similarity coefficient 
of 0.65 shows two groups, one of which consists of PR-
142 parental and the 5-M40 mutant and the other group 
consists of two subgroups where the first one consists of 
the 4-M37 and 6-M61 mutants and the second one 
consists of only the 6-M69 mutant. The highest genetic 
similarity (0.86) occurred between PR-142 and the 4-M37 
mutant and the lowest similarity (0.23) occurred between 
the PR-142 strain and 5-M40. 
 
 
DISCUSSION   
 
The 6-M69 and 4-M37 mutants have been shown to have 
higher FTase activity than the parental strains and this 
demonstrates the potential of these strains for use in cell 
immobilization techniques for the production of FOS 
(Chien et al., 2001). This increase of about 1.5 fold in 
FTase activity can be compared to the results obtained 
by Guilarte et al. (2009) for A. oryzae strain 1303 and by 
Skowronek  and Fiedurek (2003) for A. niger strain 13/36.
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Figure 4. ISSR analysis with 6 primers of Aspergillus niger PR-142 parental strain and the 5 mutants with high invertase activity. On 
the right side is the dendrogram obtained with this analysis.   

 
 
 

 
 

Figure 5. Dendrogram of genetic distance between the evaluated mutants and their parental Aspergillus niger PR-142-
based ISSR analysis. 

 
 
 

The FTase activity and, consequently, the production of 
FOS increased dramatically by performing the reaction in 
2 mL tubes in a ThermoMixer®. This demonstrates that 
the reaction conditions in 50 ml conical tubes in a rotary 
shaker were not fully optimal. It must be taken into 
account that hydrolytic processes are influenced by many 
factors such as particle size, concentration of the reaction 

medium, and the geometric and operational form of the 
medium (Abd Rahim et al., 2015). It is probable that in 
this case, several factors such as the environment, the 
type of equipment used, and the agitation elevated to 800 
rpm could increase the collision-producing cellular 
autolysis and morphological changes in the mycelium 
(Purwanto et al., 2009). These phenomena  could allow a  



 
 
 
 
proportion of the enzymes to be free to react with the 
substrate by drastically changing the results since the 
cells per se would be unable to prolong the reaction for 
an extended period of time. This would explain the higher 
FTase activity in the PR-142 strain and M-69M being 
approximately 3 h in duration, greater than that reported 
for the Aspergillus strain sp.N74 by Sanchez et al. 
(2008), and which presented a greater performance for 
up to 1.25 h. A similar finding was reported by Virgen-
Ortiz. (2016) for a pure fructosyltransferase from 
Aspergillus aculeatus which reached a maximum yield at 
2 h. The decrease of the concentration of FOS after 2 to 
3 h of reaction and the gradual increase of sucrose 
concentration after 2 h was probably due to a loss of 
hydrolysis capacity of the enzyme produced by the 
accumulation of glucose which acts as a competitive 
inhibitor (Sangeetha et al., 2004). However, the typical 
pattern of FOS formation of double-deletion (Ruiz et al., 
2013) comprising the reduction of GF2 and a 
simultaneous increase of GF3 and GF4 does not seem to 
occur here after 2 and 3 h in both mutants. This fact 
could be due to the negative effect of the enzymes shear 
caused by very high agitation that would be partially 
inhibiting this behavior. The concentration of 0.15% (w/v) 
SDS is 10 times higher than that used for the same 
purposes in A. oryzae (Guilarte et al., 2009) which 
demonstrates the higher resistance of the PR-142 strain. 
The lethal dose of UV reached 50% at 1.5 min, which is 
less than the 3 min obtained by other A. niger strains as 
reported by De Nicolás-Santiago et al. (2006) for the 
production of mutants with high production capacity of 
xylans and mannans. This reduction could be expected 
by considering the higher dose of UV rays used in the 
current work. 

It is known that UV rays are inductors of mutations 
since the pyrimidine bases (thymine and cytosine) of 
DNA are very sensitive to their effects. These mutations 
distort the double helix of DNA affecting future replication 
(Sambrook et al., 2000) and creating genetic variance. In 
the present study, each strain was differentially affected 
in its ability to produce FOS after exposure to UV light. 
The high genetic variability in similar mutants has been 
previously reported in amylolytic strains of A. niger 
(Shafique et al., 2010) and Alternaria tennuissima for 
hyper-active alpha amylase (Shafique et al., 2009). The 
presence of unique bands can be considered positive for 
the mutants, since they could be used in selection 
programs assisted by molecular markers as previously 
suggested by Afifi et al. (2013) in mutants of Penicillium 
chrysogenum with a high production of protease.   
 
 
Conclusions 
 
In this study, the potential of UV radiation mutagenesis to 
increase FOS production in an A. niger strain was 
reported. The increase of the enzymatic  activity  and  the  
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production of FOS have increased up to 1.5 times and 
this improvement is dramatically noticeable under 
conditions of high agitation in 2 ml microtubes. The 
process of mutagenesis by UV irradiation has been 
shown to have high capacity to generate great variability 
with respect to the native strain and the formation of 
unique molecular patterns.  
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